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1 Introduction

Yoneya [30] has, since at least as carly as 1987, vigorously argued that a funda-
mental, universal (and therefore non-perturbative) aspect of string theory may
be an astonishingly simple uncertainty principle involving space-time uncertain-
lies: AXAYT 2 [2. Given the remarkable breadth of mathematics emerging with
and from string theory, and the indispensable role of intuitive physical princi-
ples in connecting mathematics with nature, the possibility that such a simple
formal expression may maintain its integrity and applicability throughout an
amazing morass of mathematics strikes me as a minor miracle. Unfortunately
the meaning of the symbols in the above formal expression has not, in gen-
eral, been worked out; but it has always been difficult to provide an entircly
precise statement of what is meant by an uncertainty relation involving time
uncertainties—this despite the fact that an experimentally successful one has



been available for analysis since the birth of quantum mechanics. In many par-
ticular physical situations the meaning of the energy-time uncertainty relation
is rather clear. T'he same expression holds in quantum field theory, but of conrse
there spatial coordinates—demoted to indices—join the time coordinate.

While the role of a space-time uncertainty relation in the formulation of
the physical meaning of string theory is being studied, its role as a possibly
necessary conclusion following from quantum theory and general relativity has
also attracted attention; c.f. the holographic principle. Arguments have been
given for the proposition that consistency of the well accepted consequences of
quantum field theory and classical general relativity may be enough to conclude
relations between space and time uncertainties(18]. These arguments have been
given in different flavors, e.g. [38] [19], with different conclusions about the mi-
crostructure of spacetime. We will call arguments of this type, which attempt
to extract new uncertainty relations from local QFT and classical GR, ‘opera-
tional arguments’, due to the fact that they all rest essentially on gravitational
instability toward black hole formation as a mechanism for operationally ob-
structing any measurements not satisfying the putative uncertainty relations.
Conclusions vary; some imply a minimal length in every spatial coordinate and
others do not.

1.1 organization and purpose
We wish to show that:

e Local Qft is unable to accommodate a space-time uncertainty
relation. What is the physical reason the space-time uncertainty principle
is hard/impossible to implement in the point particle setting? Literature
has already been devoted to this subject, some of this has proposed new
quantumn field theories which manifestly satisly SURs, but are then argued
not to be unitary, other literature has shown that some natural attempts
to construct this type of field theory as a decoupling limit of string theory
encounters obstacles. (A possible new interpretation of the SUR might be
as follows: If one wishes to investigate a feature of spatial size AX, one
will generically create a BH and will have to wait some time AT in order
for the information to leak out.)

o Explain why String theory naturally accommodates the space-
time uncertainty principle. There is a formulation of string theory in
which it is manifestly satisfied. .

e When a field theory is dual to a string theory we identify the
assumption that must be changed in the local QFT framework
in order for the SUR to exist.

One study that may be interesting: examine the scattering of a quantum field
off of a classical source Tj,,,. In inverse scattering theory this is called an ‘object
function’. We should recover the basic result that in order to resolve aspects



of the object function (seems to be the classical current in the gft formalism)
on a length scale L, we need to scatter waves of wavelength A < L. The object
function may be destined to be a black hole at some time in the future all on
its own (e.g. it may satisfy the Hoop conjecture), or the system consisting of
the probing field and the object may be destined to become a black hole, or the
object may already be a black hole. There are two cases here, one in which the
object function is classical (as assumed above), the other in which the quantum
nature of the object is taken into account.

Suppose we want to resolve a feature of size L in an object of size R, we
might want to use more energy than is required. Suppose we use so much energy
in the probing field that the scatiering creales a black hole with radius larger
than R, will the information about the feature of size L eventually escape?

The analysis may become quite complicated depending on the ‘fine structure’
of the object function. If the object function has very fine structure and we wish
to resolve it, we have to use modes of the probing field with very high energy,
and the deformation of the metric corresponding to this energy density may be
very large, perhaps leading to back hole formation. If this black hole formation
occurs, the problem of reconstructing the object function from the scattering
data becomes entangled with the the problem of black hole information loss.
This connexion seems underemphasized in the literature, where it is usually
assumed that once a black hole of a certain spatial size L forms, information
about spatial structures smaller than L will forever be lost. Since the latter
conclusion leads to a manifestly non-unitary evolution as famously recognized
by Hawking, the apparent unitarity problems arising from a formalism that
essentially assumes black holes swallow this information permanently is hardly
surprising,.

1.2 On the black hole ‘Obstruction’

Arguments that rely on the existence of a black hole ‘obstruction’ to a process are
ubiquitous, especially along the lines of thinking entertained in this paper. They
are used frequently to argue against the use of effective field theory techniques
when analyzing landscape issues.

It is not however clear that they arc correct. In the classical theory of grav-
ity, one is assured of the creation of a black hole if certain conditions on T}, are
satisfied. For example the Thorne Hoop Conjecture is commonly appealed to.
In the standard formulation of quantun ficld (or string) theory, one conducts
experiments with extreme deference to asymptotic data; it is where things are
measured and wave-functions collapse-the only place we even attempt to make
measurements. If one asks detailed questions about the goings on in the inter-
action region, one is told about a variety of processes that are possible and to
what extent they contribute to the total amplitude, but not, of course, which
processes ‘actually occurred’. Questions like the latter are dealt with precisely
as they have been since the two slit experiment, which, as Feynmann famously
noted, contains the only mystery of quantum theory.



Extending this intuition to a putative ‘quantum theory of gravity’ which ac-
cepts quantum theory wholesale (such as string theory), one would not expect
questions about black holes in the interaction region to be dealt with any dif-
ferently. One would simply examine asymptotic data to make a determination
about unitarity or other aspects of the theory.

Hawking has argued that, in the Euclidean path integral approach, ampli-
tude contributions from metrics associated with the Schwarzschild topology are
zero, while ones associated with R* topology clearly preserve unitarity.

In this clearly quantum gravitational framework one must rephrase the infor-
mation loss problem. In the two slit experiment, one can destroy the interference
pattern by making an observation at a slit to ‘determine’ whether or not the
electron went through it. What is the gravitational analog to this act? If it
were possible to block every mode of a process ezcept those that required the
formation of a black hole, we could recover the information loss problem.

1.3 NCOS

NCOS is the result of introducing a critical electric field and decoupling closed
string from open ones. The spacetime (is it still made of closed strings in NCOS
theory? If so, the energy density of open strings must not cause spacetime to
bend, as open and closed strings are decoupled. It is not clear what is going on
here physically.) that the open strings live in is space-time noncommutative.
More precisely the endpoints of the open strings do not commute, but the C.M.
coordinates do. This is important, since the oscillator modes do not decouple
and the result is not a field theory, but a string theory, and thus, while the
D-brane world volume exhibits space-time noncommutativity, the entire string
is the relevant dynamical object and it extends into directions which are com-
mutative (in the absence of a NS magnetic field). Does the |+ | dimensional
noneritical NCOS theory grow and extra dimension due to a Liouville field? 1f it
does not the 1+ 1 theory is a bit strange indeed. In the usual analysis 2d string
theory is dual to the ¢ = 1 matrix model. Is something like this also true for
NCOS in 1 + 1?7 Is scems like it should. If this is true we should have a matrix
model description of string theory on a noncommutative spacetime. That could
be very interesting in elucidating the role of time in quantum mechanics.

How does Montonen-Olive duality work out?

I would need to:

o Write the NCOS theory in a form that allows the dual matrix model to
be written down. Presumably one could take the duality described by
Klebanov and Maldacena and further calculate the matrix model that
corresponds to the gauge theory. The U(1) factor and the UV/IR effect
are essential in understanding the decoupling of the gravitational degrees
of freedom. This should be understood in the spirit of Steinacker’s work.

e Review NCSYM.



2 Why is QFT unable to accommodate a SUR?

2.1 noncommutativity

In standard textbook considerations it may seem that there has never been an
attempt or motivation to suggest a space-time uncertainty relation in QFT. In
QFT, divergences are dealt with via the ideas of renormalization. These ideas
have not only allowed for extremely precise predictions, but have fundamentally
shaped the physical interpretation of, and attitude toward QFT that has come
to be dominant, namely the effective field theory attitude. According to this
interpretation, if the QF T is empirically successful at a certain energy scale and
is renormalizable, all information about physics at the higher energy scales (e.g.
the Planck scale) is exhibited throngh a [inite number of parameters determined
numerically through experiment. The only hint we have of physics beyond the
scale at which QFT is valid is these numerical values. GUT? They allow the
number of parameters to be reduced. The larger the gauge symmetry relating
a given number of fields the fewer the arbitrary parameters, but then the game
begins again. Also, the natural scale associated with minimum uncertainty in a
SUR scenario is the Planck scale, in the absence of gravity, there is no candidate
with the status of /i for the the right hand side of an SUR.

Long before the conceptual richness and beauty of the renormalization ideas
were fully appreciated, Heisenberg conceived the idea of eliminating the diver-
gences of the known QI'I”s by introducing a “quantum uncertainty” in the
location of spacetime points by postulating commutation relations between
spacetime coordinates. When Snyder took up this idea he had to assume a
fundamental unit of length, a, that had no a priori connexion with gravitation.

2.2 A Holographic reason?

The simple intuitive reason may be that only a holographic relativistic theory
allows space-time uncertainty relations to hold. The mechanism might be as
follows: as one sets up a physical interaction that attempts to determine infor-
mation in violation of the SUR, the information density in spacetime will violate
the holographic principle.

So, how does one attempt to violate the SUR? First of all, how does a field
contain information? It does so through its fourier modes. Perhaps it is more
convenient to think in terms of microstates and Shannon entropy

S = —pilogp:

2.3 SURs and minimal length

SURs, being quantum uncertainty relations operate in a more subtle way then
lattice type cutoffs, and the phrase ‘minimal length’ does no justice to the idea.
One particular uncertainty may be measured to any accuracy at the expense of
a ‘conjugate’ one.



However in the approach in [40] the standard quantum limit is used to argue
for a minimal dilference in two consecutive measurements ol the cigenvalues of
the position operator. T'hey arrive at expressions like Az > {;,;. This is the kind
of expression one expects from a lattice theory, cutoffs in quantum theory are
of a different type. While trying to remain flexible, it is important to consider
what invariant meaning a minimum length might have. It is rather ironic that
this attempt to strictly adhere to the principle of both relativity and quantum
mechanics has seemingly lead to a fundamental invariant length agreed upon by
all observers; this is manifestly at odds with relativity. We take this as a strong
indication that all principles have not been consistently applied.

While the underlying physical reasoning is similar in [18] (both sets of au-
thors use the universal nature of gravitational collapse in conjunction with the
basic constraints of quantum mechanics) the proposals are in the end quite dif-
ferent. The proposal in [18] does not have a minimal length. The logic of this
approach is to argue heuristically for the ‘minimum ball’ as in [40] which then
implies that every Az can not be zero in the same quantum state (we don’t
say ‘simultancously zero’ as we don’t know what that means in this theory).
From this point on Doplicher et. al. try to build the theory from the SURs
up, using standard consistency conditions [rom quantum ficld theory. A set of
operators is chosen to realize the SURs, and using the techniques of noncommu-
Lative geometry, quantum field theory is written on the noncommutative space
generated by these operators. The SURs proposed in [18] are

3
A Az 2 U (1)
Jj=1
3
> Azdw 2 3. (2)
Jik=1

It should be noted that the above is not arrived at uniquely in [18], but suggested
as a natural and apparently consistent solution to their uncertainty problem.
Note the more quantum mechanically conventional form of the above uncer-
tainty relations.

One now has to construct a dynamical theory that lives harmoniously with
this kinematical framework. Here is where things get very interesting. In some
sense we can see in these approaches expected dynamical results from semiclas-
sical quantum gravity being encoded into a proposed kinematic construction
in quantum gravity. The idea is quite old and has proved both successful and
unsuccessful. Einstein did it famously with Maxwell’s theory yielding special
relativistic mechanics as well as special relativistic electrodynamics, but Einstein
already had a fully dynamical theory realizing the new kinematics. To be more
precise, electrodynamics already had a dynamical symmetry called Lorentz sym-
metry, Einstein realized that he could ‘kinamatize’ this symmetry, i.e. identify
it directly as a property of space-time and consequently a necessary property of
not only electrodynamics, but any dynamics. This let to relativistic mechanics.
While the insight that dynamical theories should be Lorentz invariant is surely



one of the most profound in history, this progress, from an invariant dynamical
theory of electrodynamics to an invariant theory of mechanics, was in a disap-
pointing direction. Electrodynamics clearly more deeply connected with nature
than particle mechanics ¢.f. gauge theory. An example of moving in the right
direction is given by the history of holography.

3 Unitary and NC

Due to the work of Bahns et. al. [10] noncommutative theories with space-time
noncommutativity (i.e. 0% 5 0) are unitary and well defined, I responded that
there is certainly a vigorous debate going on as to whether the formalism in e.g.
[10] was even internally consistent—completely aside from its connection with
reality.

Note to myself: [About unitary and noncommutativity with 6% # 0 Do-
plicher et. al. claimed that their theory is fine. Gomis, Sciberg, Greenberg
found lots of problems but never said they could not be overcome by some kind
of modification of the theory. Doplicher then changed the theory by using a
weird time ordering that had never been used in field theory calculations that
were favorably compared with experiment. In other words it was a departure
from the usual and verified formalism. SO people started to see if the new time
ordering simply pushed the inconsistency (lack of unitarity) clsewhere. Fujikawa
found that the positive energy condition (which is essential for spin-statistic
theorem) is not satisfied with the new rules and others found violation of the
Ward identity. There are hig problems with causality studied by greenberg and
seiberg. In string theory one finds that in the case of spacetime noncommutativ-
ity there is no field theory limit. This means thal siring oscillator states cannol
be ignored, which would explain the non-unitarity problem Doplicher et. al.
initially faced. It is of course possible that these problems will be understood
in time...]

I am very interested in this issue because of my research too. Some (possibly
overlapping) problems discussed in the literature are

o Failure of the Ward identities. Does the holomorphic ward identity imply
the Ward identity discussed in [8].

e Tailure of Unitarity. Unitarity requires that the
e Instanton type solutions

o Are electric ficlds required for spacetime noncommutativity? The Yoneya
argument implies that the answer is in the negative.

o What happens physically when 0% # 0 that makes the stringy degrees
of freedom dynamical? What makes the string wiggle? Also what is the
reason for the decoupling of closed modes and not open ones?



4 density of states

Notes taken from [41]. This section is designed to clarify the origin of UV
divergences of QFT and the resolution of these in string theory. Three high
energy limits:

e High C. M. energy I¥ = /s; fixed angle. The Virasoro-Shapiro amplitude
for four tachyon scattering is

S(ky, ka, ks, ka) = ie*"° Cg, (2m)2°() ki)

(—2 ~ 1)0(-% - Or{-%-1)

“I(-3-3-9)

IR

e Soft scattering: high C.M. energy and small angle, holding fixed the mo-
mentum transfer ¢ —L.

5 nonlocal conservation laws

Some work has been done in this area [44].

6 the energy-time uncertainty relation

As is well known, this well verified physical principle stands on a slightly different
footing than the position momentum uncertainty relation. This is because time
and energy cannot satisfy canonical commutation relations [//,T"] = ifi (for any
choice of time operator) without destabilizing the Hamiltonian (i.e. stretching
its spectrum to —oo). This is an immediate consequence of the uniqueness
aspect of the Stone-von Neumann theorem.

There is however a very simple argument, well known enough to be found
in undergraduate textbooks, for why a formally identical “uncertainty relation”
should hold despite the dissimilarity in the operator analysis. First of all we must
abandon the (nonsensical) notion that At represents the standard deviation
of a series of measurements of the “time property” of a system. Instead we
imagine the system as being characterized by a (possibly over-complete) set of
(not explicitly time dependent) observables satisfying the Heisenberg equations
of motion, and regard some appreciable time as having passed for the system
provided that the expectation value of at least one of the observables has evolved
by a standard deviation. Consider, for example a set of Alp, each indexed by
an operator ©. Then

AFE = h[mino/_\to]_l

where Alp is defined by

L) <O > Alp :=00.
dt



(One should include the states |1 > here. Could this be Wick rotated to an
energy-temperature uncertainty relation in field theory? Note also thal, since
the uncertainty in energy/time is defined in terins of a certain set of observables,
which may be appropriate for the system’s description in one energy regime,
but not in another (c.f. effective field theory point of view) we must understand
whether or not the renormalization group preserves the uncertainty relation.
Here is a crazy idea: the physical time in quantumn mechanics is Al-the time
during which something happens. The rate of that physical time depends on
the energy scale being considered, as faster ‘modes’ or processes are considered
as the range of energy scales being entertained grow. Then the ‘end of short
distance physics’ will then imply...)

First we have to generalize this to QFT and then to string theory. Perhaps
the place to start is the scattering formalism in standard quantum mechanics
detailed in the Bohm textbook.

6.1 non-relativistic scattering

We wish to examine some examples of valid use of the energy-time uncertainty
relation in the Feynmann formalism and then propose a general argument for
the energy-time relation within this formalism, attempting not to introduce
concepts/techniques from outside. Do the example problems in Griffiths using
the path integral!

Standard deviation in the path integral formalism.

The ( appearing in the Schrédinger equation is a parameter time. The
Schrédinger equation is invariant under a simultaneous re-scaling of the time
and a reciprocal re-scaling of the Hamiltonian. Thus changing the unit in which
time is measured is identical to changing the unit of energy measurement. There
is a ‘conjugacy’ here that can be scen e.g. from

I = hv

For the free non-relativistic particle, observables are e.g. the position, mo-
mentum, and energy of the particle. The position X, in conjunction with the
state, |¢(t) >, and the dynamical equation allow one to calculate the spread in
the wave packet as a function of time. This can be used as a “clock” that ticks
every time the packet spreads by a standard deviation. The clock function is

2

4m2o

) 6))

o3(t) = o2(1 +

For initially narrow wave packets, o < the relation is approximately

10



7 uncertainty in field theory

7.1 the short time region

The argument in [30] is analyzed. In the ‘short time region’ (which is not
a clearly defined concept), the uncertainty in the energy grows indefinitely.
What might replace the formal symbol At? In analogy with the non-relativistic
analysis, we should consider the most quickly evolving observable characterizing
the system, and define the smallest time step as the time required for Lhis
observable to evolve appreciably (for example by one standard deviation).

Since there is extreme formal similarity in many particle quantum mechanics
and QFT, we should decide at this point which view to adopt. The wonderful
conceplual advantages of the field view lead ns Lo adopl. it, thus we define Al in
a given physical system S as the time step required to advance the most rapidly
changing observable by one standard deviation.

Here we need an example. In the case of a scalar field theory with a source,
the observables are the field and its derivative. When has the field undergone
a substantial change? Perhaps when a substantial number of particles have
been created? This seems too vague.

Statistical fluctuation theory and relaxation to equilibrium allow for the
caleulation of the size of fluctuations and their durations. These can be cal-
culated when the field is isolated in equilibrium or when is has been disturbed
by a source. When a field fluctuates, the Auctuations can be of a quantum or
thermal nature (or some combination). To what extent are these fluctuations
observable? What is the correlation between the size and the lifetime?

How are the uncertainty relations realized in QFT? From the point of view
that QM is 041 QI*T, the same problem that arises with At (in QM) also
arises with Az in QFT. The quantum operators are the fields (,13(’1.), and thus
the Robertson uncertainty relation is only applicable on field space. The in-
terpretation of At, Az must be considered carefully. One important question
is whether At is determined by internal (quantum) system variables, or by
a classical external clock (perhaps by taking the classical limit of a quantum
environment).

Briggs makes the statement: “A closed quantum system has a time-independent
Hamiltonian and there is no reason to introduce time.” Is this correct? Is there
no evolution for a closed QM system? This statement seems to have no basis
at all.

The already confusing situation is compounded, at least in magnitude if not
in substance, by the replacement of the time parameter by the metrical space-
time continuum, in QFT. Arguing by analogy one might expect that spacetime
and the metric might be related to the decohered limit of a quantum environ-
ment.

Possibilities for At:

e Lifetime of an unstable state

e One standard deviation of an internal clock variable

11



e One standard deviation of an external ‘environmental’ clock variable.

e The duration of an experiment (supposedly refuted by Aharonov and
Bohm)

How does the metric for a one dimensional (time) line arise from the quantum
environment? ;

Back to the density of states and uv divergences in gft. The basic question
is why are there uv divergences in gft and why does string theory avoid them.
This is too big a problem to tackle in detail within this article. We just need
an intuitive argument; perhaps even just a sharpening of Yoneya’s
argument.

8 the traceless energy momentum tensor

The canonical energy momentum tensor
T = =g L+ 8,90,
is
17 = (36)?
T = (99)
T = T3 = m2e?
for the Liouville theory. If we modify it by introducing an extra term, antisym-
metric in the first two indices, that does not spoil the conservation law (due to

Belifante) we get,
rlwul - fl‘jlll + aﬂB,‘J;m

we can satisfy both the constraints of tracelessness and conservation. We find

The resulting traceless, conserved energy momentum tensor is, dropping the

prime, - - N
T3 = T = m?el 42004 =0 (5)

1% = (B8, T = (00 )

As we will show conservation equation simply states, up to Moyal brackets. In
the commutative case the equations read,

T(z) = T%*(2) = 4T3 () (7)

and
Tz)= '1."22{2,} = 47, (2) (8)



The split is into anti-holomorphic and holomorphic parts respectively. In the
noncommutative case the matter is a bit more complicated, the conservation
equations are,

1 A 3 A &
== = -—57112 (e? x Ip + O x €2 + Del) ~ 0
o 1 ;
g7~ = —Emz(ef*(‘){b+f)¢*ef+aei’) ~ 0
The ~ sign means up to Moyal brackets, it is used because arbitrary Moyal
brackets may appear on the right hand side without alfecting the properties

hitherto discussed. To pursue the matter further we have to evaluate the deriva-
tive of a star exponential.

= 1
PAYR SN L
de =0 Z n!(ﬁ*
n=0
Now, the derivative of each term ¢7 is
007 = px 2t + x99 x P -+ 8TV w0 x g

Note there are n terms in d¢™. Now we can sum each of these terms (labeled
with a k) over n. Ior the first we get

=1
Z —9px "l =px g L xe?
n___on!

The second is

&9 = =
Do bx0bx LR =D (0% 9+ 9 Oglar) * 4177 =
n=0 n n=0 e

(the M stands for Moyal bracket in order to eliminate at least some stars from
the equations)

. o 1 : s
D ¢ wel +19,08n % Y — 0L F = 09w ¢ wel + [6,09]m x e
n=0 "

using induction we prove, for the k"™ term

(0 % ¢~ + (0,0 ar % 072 + - + [ Dp)ag x 67 e

0

1=0

or

13



8.1 some star products

In order to get a feel for the new product we review its action on holomorphic
and anti-holomorphic functions. First note

[Z'E}* = !zsgll\d e 2022 = 20(:22 (9)

where ¢ is defined as usual. For these formulas are casily deduced from the
differential expression of *, namely,

%

From straightforward computations we have

2Pk ™ =g
Zn*zm_zm+n
Zk 2 {/.|2+0
Fxz=|2|2 -0
zmvr.§=|z|2 i1
f(z}*z‘*zéf(z)-{-ﬂ%
24 J(2) = 31(2) - 05
g af
2),8 =205
[0y 02 = 21() + 0L 25+ 2]

8
J(z)» 2™ = (08 + 2)"‘!( )

The most important formula comes from the last identity generalizing to an
anti-holomorphic function g(Z).

J(z) * g(2) = g(07%0; + 2)/ (2) (10)

On the right hand side ¢ is no longer a function on C, but rather an operator
on sufficiently differentiable functions [:C — .

(For the uninitiated: There is a small abuse of notation here; S{z)xg(Z) does
not mean anything. We use it here as an alternative to a more honest notation
(f*g)(z, Z), where the reader would have to remember the analaticity properties
of the factors. This may seem like a trivial point, but the confusion appears in

the literature. Note f(3 +4i) » g(5+ 7i) is not defined, but (f +g)(3+4i) is well
defined and depends on the values of [ and g on the whole domain, not just at

(z = 3+ 4i).

14



8.2 Lie product

It turns out notation for a Lie product is convenient for computations in this
theory. The Lie product of ¢ with a (not star-commuting) function @ is written

{Adq,)"(,,) = [¢[¢[ % [@a Q] i ]”M, (ﬂ. = l.?:mes).

Where the subscript M means all brackets are Moyal star brackets. We want to
satisfy

(O % €2 + ¢ x Op) — Def ~ 0 (11)

B = DN =

(Db * c? + ¢ x Dp) — de? ~ 0 (12)
where ~ means “up to a total commutator”. Concentrating first on de$ we have

8.3 adjoint identities
Here are a few identities.
Ady(AB) = AAd4(B) + Ad(A)B (13)

That is, Ad is a derivation. Also Ady commutes with any function B3(¢$) when
acting on Q:

[Ady, B($)]Q =0 (14)
Furthermore one can deduce the reduction formula,
Adgm = Adgm-1(p — Ady) + 0™ ' Ad,. (15)

This identity then implies that Adgm can be written as an operator F(¢; Adg).
To find the form of F(¢; Ady) we use standard commutator rules to expand

ml T 22
Adym = (~1)m+D) 3 (k)(—gb)’“AdE,m k)
k=0
= (-1)™*((Ady - $)™ +¢™)
= —(=¢)" — (¢ — Ady)™

Where (Adg)? :=1.
The quantity of interest is

r)eqb - ila(ﬁrt_ilid)k—l*a(b*d)ngk
9 = U'u.! T n!k_l * ¥

n=1
while
Pl x0px ik = 206w g 3006
1 b
206,05 ar w677 = 505 (67, 00l

15



Using the above identities,
L, e i T 1, 4— e
500* 87+ 58T 80 — S(00)Ad s x 677
|
o 9h 1 Adgnr(09) =

200~ 1 241 w06 = (081 (B - gt

1 o
5 (1" RgE (A — )" (99)
Making the summation over k yields
n(n—1)
2

1 . n
~5(00)(6 ~ Adg) 1Y (1 - Adyp)r 5 47

k=1

(3) @9 x 627" +637 % 09)

1
2

(6 — Adg)"g 1 3 (1 - 7' Ady)H(99)
k=1
(n —1) 71
= 20D (D) @pr gt + 91 4 09)

Another goal is to write def in a way that makes its properties transparent
and proves that the conservation law is satisfied (in the noncommutative case
this means that the divergence is zero up to a Moyal bracket). We have to cope
with expressions like ¥~ 1« ¢ ¢~k

(¢71Ady)Q = Q(Ad, 10) (16)

8.4 conservation to first order in @

Iixpanding the conservalion equation to first order requires expanding ef. First
we calculate ¢7.

8.5 Traceless and divergenceless

Tracelessness is only important insofar as it leads to the (anti-)holomorphic
split. This split comes from the divergence equation. In the noncommutative
case, we find that the divergence

8.6 charges in space-time noncommutativity

In the excellent article [39] it is suggested that the the concept of conserved
charge encounters difficulties when fp; is nonzero. This would present some-
what of a puzzle since space-time noncommutativity in string theories (like little
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string theories) seems to be constructible without conceptual difficulty and one
would expect the conservation of charge not to depend on the higher harmonics
of the string (which is what takes care of the unitarity problems that plague
space-time noncommutative theories with no extended degrees of freedom. Of
course o effects can fix a lot. One could however imagine that without a clear
Hamiltonian formulation charge conservation may be ill-defined. The situation
is still obscure to the author. These worries have led to an attempt to write a
conserved charge for 0g; # 0. The solution seems to be immediate. First note
that

f“& g]hf(»'v)dzn.l' =0

independently of i(z). Now suppose h is a delta function picking out a spacial
slice along which one will define a conserved charge from the noncommutative
Noether current defined in [39]. The make things simple, we work in d = 4
and take the hyper-surface in the d3elta function to be defined be ¢ = 0; we
actually have to take two such surfaces to reproduce the standard ‘tube lemma’
of classical field theory. Then

Jugoate = [1r.glucs

This means that when we integrate a current that is conserved up to noncom-
mutative brackets, as oceurs in general noncommutative field theory,

8#_]-“ — [.l(.x .{}IM'

we find that
Q) = i?gf.]orl%: -+ f{j cJd3z - /[f, glmdz =0

as expected. In the case of Liouville theory the ‘corrections’ to the conservation
law (we use quotes because the conservation law still provides a number that
does not change as time passes, but the equation expressing this fact has changed
form) will contain higher order terms in 0.

9 conformal invariance

It is a standard result that if a Poincare’ invariant theory possesses scale in-
variance, and has an energy-momentum tensor that can be made traceless, the
theory is fully conformally invariant. The stress tensor for Liouville theory may
be made traceless, with an appropriate conformal modification which does not
spoil the continuity equation. The connection between tracelessness and con-
formal invariance is included (in any dimension) for completeness. First let
2/t s 2/* + ¢ be an arbitrary coordinate transformation. Then,
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65 = f d4aT e,

1
= 5] ld(ll’[l‘”/(ar,{ly‘l'auf_“),

but now, a conforinal transformation is defined by
2,
Bmc”) = adﬂtﬂ

thus .
88 = : / d* Tl f,ef =10

Since the Liouville field is most conceptually at home the expression g =
e7(%:2) 5 this is consistent with the well known fact that the theory with a set
of scalars coupling to gravity in two dimension is always conformal. In this
context the Liouville equation appears as 7)f = 0 A consequence of this is that
the nonzero components of the energy momentum tensor split into holomorphic
and antiholomorphic pieces.

10 the Virasoro charges

The operator coefficients of the Laurent expansions,

75} = Iial = o
Lu@)= 3 s T20) 3 7%
m=-00 m=-—oc

of the holomorphic and antiholomorphic parts of the energy momentum tensor
salisfy the Virasoro algebra if the theory is conformal. The coefficients are give

by,
dz
Lm a R 'm+2T .
fgc Bl )

with C counterclockwise.

11 Operator Product Expansions

Here we want to compute the OPE’s of the energy-momentum tensor of both
the commutative and noncommutative Liouville theories.

12 Ward Identities

Noether’s theorems relate local or global symmetries of a Lagrangian to con-
served currents or charges respectively. The Noether theorems have a funda-
mental place in classical Lagrangian and Hamiltonian theories, whether gravi-
tational or not. What does this have to do with the Ward Identities? They are
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the Quantum Version of the Noether Identities. Using the Ward identities one
can (and I did this on the chalk board in the string theory talks) work “back-
ward” from a conserved current to calculate the infinitesimal transformation
under which a theory is invariant. Work in 141 and analyze Ward.

I tell you this so you can answer the question, “Who cares if the Ward iden-
tities are violated?”

FFirst consider a symmetry of the quantum theory with classical action S[¢).

$a(0) = ¢'(0)a = Pa(0) + ¢ ()
[dple=519) = [dg')e~ 5] = [dg|e 51

We cow consider a change of variables that is not a symmetry but becomes the
above when p — const.

$a(@) = ¢'(0)a = ¢a(0) + p(a)d¢a(0)
Where p(o) is an arbitrary function with compact support. Clearly the change
in the path integral must be proportional to d,p, as the change is zero when p
is constant.

(46 )e= 51 = [dgle=9 (14 5 f d*o /57 (0)Pup(7) + O(?)

To get the Noether theorem we can take a path integral with arbitrary
insertions outside the support of p, recovering the fact that V,j* = 0. To get
the Ward identity, we take p to be equal one on its domain of support, and
include one operator A(ag) in the support £ and arbitrary insertions clsewhere.
Computing the change in the path integral gives

[ dAngj* A(og) = 2—_{6,4(00).
R B

Here n, is the outward normal to @R. In other words the integral of a con-
served current around an operator gives the variation of the operator under the
symmetry corresponding to that current.

The free scalar field is invariant under the Poincare group. The Nocether
charge associated with spacetime translations is the stress-energy tensor.

1 ‘
Tab = 09Ot — é'gabacﬂbacd)

Specializing to two dimensions we work in complex coordinates. It is unclear if
one can do computations in Euclidean space and continue back to Minkowski
space in the noncommutative spacetime (which might be another project). For
now we work directly in complex space.

z=al4i2? Z=2a'-iz



0o 1
(9pr) = ( % (2] )

Define a current associated with the energy-momentum tensor as follows
I =0T, (17)
The energy-momentum tensor appearing here is the modified traceless one.

TZZ —

13 Liouville theory

14 noncommutatve Liouville theory

Consider Liouville theory in 2d, with ordinary products replaced by deformed
ones. (Double check factors of 1/2 in measure.)

S[g] = f d%(%ad;*éqs— %mzef) (18)
R

We initially assume that R = () so quadratic terms may be evaluated pointwise.
This new theory is probably not conformally invariant, due to the length scale
introduced by 0. Is this theory conformally invariant?

The equation of motion is

DG + ém%;{' =0 (19)

The energy-momentum tensor is

T — 7.(]“”[: + P x (20)
T# = (9¢)?
15 = (D) (21)

T3 = T% = m?%e?

The conservation equations read
1

a(0)? + l—imzaef = (22)
- 1: =
(D) + Zmz@e‘f =0 (23)
Using,
n—1
9 & o io: lqﬁk * O * (ﬁ(n"]‘) % Qb_k (24)
(ﬁ* = TL' % { * *

n=0 k=0
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n-—1
1 T =
Ok x D x ¢k g7V (25)

oo
n=0

With a little fiddling, one can write
[Zcp x Opx ¢ F, @ = (9 — ¢L x Dpx 7™) % ¢ (26)

Now lets evaluate

oa 1 oo -1
Def=08) —dr=3 > - _¢’°*a¢ R (27)
n=0 n=0 k=0
Let’s concern ourselves with
n-—1
O O« ¢, F
k=0

first. We can write this in terms of nested commutators. In order to make
the notation readable,star products will be dropped and all products should
be understood as noncommutative (stars) unless otherwise noted. The general
form is

ZDMAd (96)6 ZLM{Ad (9967) + AdS 1 (6°09) }

where Din and Ej, are combinatorial factors, Ady(d¢) = [¢,d¢]., and
higher powers of the latter are nested commutators with correspondingly higher
powers of 0. We can also use

Adl = (-1)"Ad}

and the similar relation for Ad,-1 in order to simplify things. Now it becomes

n—1
S DinAdf(@8)67" }_“,Lkn{ "(06)(Adgg )" + (9Ady 1)(20)}

k=0
(28)
To achieve some clarity regarding the form of the theory we have to calculate
the coefficients Ky, and recoguize the resulting function after summation. We

can do this using recursion relations.
First we start out with a basic formula and work out a couple of cases

explicitly -
906" =20 - Q(Adsp™") - ($Ad,)Q

where @ is any operator, in our case J¢. Iterating again gives

0672 = 40 — 3Q(Rdeo~") — 3(pAd,1)Q +2Q(Rdy6 ") +2(¢Ady-1)*Q.
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In my green notebook, page 74, I came to the conclusion that
el = [A(L - A)] ' Aag (29)
where A is an operator defined as
A=¢Ady 1.

Assuming that this is accurate, although it must be checked, we proceed in
calculating the divergence of the stress tensor. All the

A(DP)? +m2e? = ()P + JOP(9d) + m2[A(1 — A)] el M9y (30)

A simplified derivation of the derivative of de? starts with

- .
r)c*=zmqb*

n=0
noting
n—1
gy = Wi xIpx gt x gl
k=0
The factor ¢* « ¢ » ¢ *, can be written as (1 — A)*d¢ where,
A= ¢pAdy
Then
i l Z_: kagﬁ*qb“ 1
]
n=0 k=0
— 1 (1-A)"
s Z _"('——)—dd) ¢n :
n! A
n=0
- o 1 n n—
=-A 1Za[(l — A —1]9¢ * ¢!
n=0
s il 1Z Y Ipx R+ AT ‘Z —0bx gl
n-—O nuO

Note that the operator (1 — A) bumps 8¢ over one space: (1 — A)dd « il
¢ xpxd? 2. To sum this series we nole that if we define the operator I3 as an

operator acting on the right i.e. 5= Ad¢,¢:‘ , we find the relation AQ = Q13,
where (Q is an arbitrary *-function of ¢ and its derivatives. With this we can
write

(1-A)"Q=0(1-D)"
The final result is

— A1 (9¢) « 2BV (1 - B)' — A1 (0p) v el % ¢ (31)

22



The classical limit must be checked carefully.
Another identity,
[pAdy-1, ¢ Ady]4 =0

What is the inverse of pAd,-1? Let’s consider first the more familiar prob-
lem from quantum mechanics.

[z, p]s =ik

whence, 57
[f(2),ple = zﬁ%
So to solve for [ we must integrate. This is to be expected, as derivations are
normally defined in terms of commutators in noncommutative geometry. The
operator analog of integration is the trace operation, so we might expect that
the inverse of pAdy-1 to be given by some kind of trace or integral.
To implement this idea we may need some kind of Hamiltonian structure
in order to identify the canonical momentum to ¢. This chain of ideas may
signify trouble due to the lack of a transparent Hamiltonian formulation of

noncommutative resp. nonlocal theories.
15 noncommutative spacetime
In the {2 2!} coordinates
[z, 2"] =0 =]
and therefore in the lightcone coordinates
[at,27] = 2i0
This algebra can be realized via the star product
(Frg)at,z™) = lim OB fiott o )g(at.a7)
==z
We now use the definition of noncommutative field theory suggested in [13].
Sl¢] = fdz.’lf{%(qub)g - %mzqﬁz - ;—\!fﬁf}

is the action. In [13] an unorthodox prescription for time ordering is provided
which makes the perturbative S-matrix formally unitary. We say formally be-
cause we take the view that, at present, the internal consistency of spacetime
noncommutative field theory is not at all clear. Consistency checks on the sug-
gestion in [13] has given disappointing results and it would be nice to understand
why in an intuitive physical way. Arguably such an intuitive reason has already
been given in [7], which amounts to the insight that, because there is no field
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theory decoupling limit in string theory that would leave the spacetime non-
commutativity, one must include stringy degrees of freedom in order to preserve
unitarity. In other words the string theory analysis provides the missing degrees
of freedom. A question is, ‘How does this general analysis square with the re-
sults from NCOS and OM theories?” Presumably, either further modifications
or reinterpretation of the field theory formalism are required or the proposal in
[13] The classical equation of motion is

(O +m?)é(z) = .\.%qﬁ (®).

This result does not depend on the structure of ¢*¥. Under a Lorentz trans-
formation, the space and time parts of 6/ mix. The space and time parts
correspond to magnetic and electric parts of the NS B-field resp.

Y 1= g%
02. = %e;kﬂjk

I am confused about when the unitarity problems arise. Is it just when 0§ # 0
or when 0" is not space or light like. The standard results [1] indicate that
0t = 0 is necessary for unitarity. However there are duality arguments that
seem to contradict this. Aschieri [20] has found a correspondence between static
solutions in space-NCDBI and static solution in spacetime-NCDBIL. NCOS [24]
(21]. OM theory [23] [24] [24].

The shed some light on this we review the S-duality of the DBI theory given
by

1
SpprlAi; gij, Bij] = e f d'0/det(g + 2ma!(B + I))

16 the new rules in discrete time theories

17 NC Oscillators

Can one write a model of coupled noncommutative harmonic oscillators forming
a ‘mattress’, (as in Zee) that produces noncommutative QFT?

18 Peierls bracket

Suppose a system’s action is perturbed by the addition of a ‘small’ physical
ohservable €.

S[¢'] = S[o%) + eBo']

The Peierls bracket is cdefined as

(A,B):=D;B—DgA=D,B-DiB=
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19 instability and rigged Hilbert space

exponential versus power law non-normalizability of wave functions makes a
difference.

20 the beautiful physical diplole picture

Dipoles moving orthogonally to their extension. The canonical structure is not

21 Schwinger action principle
22 BJL method
23 Yang-Feldman quantization

24 unitarity

The physical basis of unitarity is the inclusion of all physically relevant degrees
of freedom. A unitary theory is self contained in the sense that all states into
which a given state may dynamically evolve are present in the Hilbert space.
If a system contains a subsystem, e.g. a particle that is unstable, the state
representing this subsystem must not appear in the asymptotic Hilbert space,
since, due to its instability, it cannot freely travel arbitrarily far away from the
interaction region.

A simple model due to Veltman, with these characteristics is

Discrete time theories do not satisfy this: ™ Thus, the theories with a dis-
crete time variable do not satisfy the unitarity condition.” Of course there are
noncommutative theories with continuous time. For the discrete time case there
are un-physical non-oscillating modes.

25 asymptotic completeness
26 Slavanov-Taylor identity
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