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1 Introduction

From one point of view noncommutative field theories arise as an attempt to in-
clude one feature of quantum gravity, the absence of well defined localized points
due to quantum fluctuations, in a concrete setting. This feature is expected to
be present in any quantum theory of gravity due to the old argument that black
hole creation will intervene in any attempt to operationally define the location
of spacetime points beyond an accuracy Az ~ Ip ~ 10~33¢m. For a nice review
of this argument see (cite bahns, doplicher et. al.) section 1. The reader of this
argument will notice that it applies equally well to space and time coordinates.
In practice however, the construction of consistent space-space noncommutative
theories is much easier to implement than those of the space-time variety. In
fact, whether the latter theories are quantum mechanically consistent is a sub-
ject of current debate in the literature—a debate we do not wish to enter, as we
have not carefully studied the proposal in [?] However, form the point of view of
string theory, the lack of unitarity in spacetime-noncommutative field theories
is given a particularly simple interpretation in terms of the absence of a decou-
pling limit which only leaves massless string states. The lack of unitarity is then
interpreted as the obvious manifestation of the fact that important dynamical
states (the massive string states that did not decouple) are being ignored in a
pure field theory limit.
In this work we will allempl to define e noncommutative Rindler wedge

2 Classical Rindler space

Consider (R?,7n) =: M with coordinates {z,t}. Classical Rindler space is de-
fined by the coordinate transformation

z = o 'e%cosh(an)
t = a"te®sinh(an) (1)

Which brings the Minkowski metric into the conformally related form
ds? = e2%(—dn? + d&?) (2)

The geometry is displayed by the following spacetime diagram
This geometry has the same isometry algebra as M, namely the Poincaré
group in two dimensions, P(2). It is generated by the Killing vectors

Vi = e*Etm)(a, + 8;)
Vo= e(€=n) ((")7, - 35)
V"l - 81) (3)

satisfying

Vi, Va] = V3 [V2, V3] = =Va V1, V2] =0 (4)



The timelike killing vector is obviously V3 in the right wedge R and —V;3 in the
left wedge L. The physics in L is the time reversal of the physics in R as is well
known. Note that the Killing vectors are defined on R, or with appropriate sign
changes on L, and are not globally defined on M.

2.1 The Unruh effect

There are at least two physically distinet derivations of the Unruh effect. The
most widely known relies on the existence of both Rindler wedges, L and R. We
will sketch the argument. Consider free scalar field theory on M, with equation
of motion

( 9% o?

o N S W

a2 dx? ) ¢

Solutions can be decomposed into a basis consisting of positive frequency cigen-
functions of the timelike Killing vector Lg, .

ug = (drw) ™7 gike—wt)

The field is expanded as

$(t, ) = _[arun(t, z) + afui(t, z)]

k
and the Minkowski vacuum defined by

a0y >=0  Vk

The Fock space is generated by a}; acting in all ways on |03 >.

Alternatively one can write a basis of cigenfunctions of positive frequency
with respect to Lig,, where +3, is timelike in R and -0, timelike in L. These
modes are

Ry —

3 Noncommutative geometry

We present here a brief review of the formalism of noncommutative geometry
in order to introduce some notation and select results. As fermions will not
be introduced in this study we will have no need of a Dirac operator and will
confine ourselves to a formalism in which there are three main elements: algebra
A, Derivations on the algebra, and a definition of integration.

The algebra A will be required to be associative with an antiholomorphic
involution. As per usual it will be presented in the form of a free associative
algebra (think of all formal polynomials) generated by given hermitian elements
a’ such that (a®)! = a® subject to certain relations, given in the form of com-
mutators [a?, a’] = i€Y with £€¥ € R.

A= AFree/([ﬂi,aj] — 7{17 = (])



The derivations, 9;, on A are required to satisfy

0;(ab) = (&;a)b+ a(9id) Va,be A (5)

and
/ Tro;a =0

/T?‘[a, b =0 (6)

for clements a, b with “appropriate falloff” at all boundaries and infinity. These
last two conditions will be violated for the fields we will be considering in Rindler
space. Derivations are inner if they can be written as a commutator and outer
otherwise. Integration, the notation for which appears above, is required to
arise always in conjunction with the trace.

4 The Noncommutative Rindler algebra
We start by assuming that the variables 2 and t satisfy the relation

[:L‘, t] =10y (7)

where g is a constant Poisson structure. It is convenient to write a map

i e 3 10y LTI, 1B, o 9 SOBEE, ) i L IR Lo 1) mcmn i Eircasmn
o VIIIKOWSKL LU eXPULIEHILIALEU LUHIULIEL CUULULLEALES 1L LG TULLUWLLLE, 1OUL 1Ll

[

208 = g2(z? — %) = %((m +t)(x —t)+ (x —t)(z +1t)) (8)

@+ 0+ @- ) @+ Y) (9)

620.1) st

where this is to be interpreted as an operator equation between hermitian op-
erators (this is the reason for the Weyl ordering of the right hand side of the
second equation. We find, after a little calculation, that the algebra induced by
is

IEQ(LE’ e2an] s 42'0,290620'7?

Now using the the definition In(X) = 3 oo (—=1)"(X)" for the log we deduce
the relation :
[€%%, 2an] = 4ia*@y

which states that the variables %6 and 2an are canonically conjugate. The
relation
[2a¢, 2an] = i0(&,n) = 4ia®Gpe2*¢ (10)

then follows immediately. We interpret this as the algebra of the noncommuta-
tive Rindler wedge induced by canonical noncommutativity on the Minkowski
plane.



One might at this point ask whether this C*-algebra is amenable to repre-
sentation by an associative star product. A sufficient condition is V;07% = 0,
where V; is the connection associated with some metric. Writing

2
(e, 1) = z%’

where g is the determinant of the Minkowski metric in Rindler coordinates we
see that the condition is clearly fulfilled. It is a pleasing circumstance that the
form of the commutator allows a nice change of variables (cite Fosco) which
leads to an exact expression for the star product. We now review this change of
variables. In the following we use the notation of (Fosco) in order to keep the
equations clean. The relation with our variables is clear and will be explicitly
written in the sequel.
Consider the algebra

[z', 2%, = 2" %2 + 2? x 2! = i8(a!) = ifpt(x!)

where t(z!) = —A=. Multiplying both sides of the equation by \/t;—]) we arrive

V=g’
at
y'*y® — Pyt =il
where :
yl = gk
2 1 2 L

Yy = * Tk

t(z!) H{zt)

The algebra of the y’s can be realized by the Moyal star product. In fact we
have

fw)*g(y) = f(y) * 9(y) = ewp{%ﬂoej’“%%}f(y)g(ﬂ)ly:ﬂ

The inverse transformation is
et =y' (11)

2% = /t(y") *y® * V(YY) (12)
A dramatic simplification arises due to the fact that we can directly compute
the Moyal products on the right hand side of the last equation to find

gl gt (13)

2* = y*1(y") (14)

The noncommutativity has now disappeared in the transformation. With this
transformation in hand we can find an explicit star product realization of the
algebra (10), define derivations and integration, and write field theories on the
Noncommutative Rindler wedge. We write the star product and define deriva-
tions and integration below, leaving the field theory construction for the next
section.



First we turn to the task of constructing an explicit formula for the C*-
algebra (10). It is easily checked that this algebra is satisfied if we write

iz} xgla) = flu',tNy?) * 9l 1w y?)
= e (300l 0 0 £ 0 W)@ )P s (15)

Now we simply apply the chain rule to get

by g 0 a 0 P v TS i ¢ L T
ra(e) = o 3 18 5 g — e g g + (o ey ) iy )
(16)
Specializing to the case of interest
' = 2a¢ y' =l =2t
x? = 2an y? = e® 1% = 2% 2an
t(z!) = e~ 2a¢

we find that

16 o g 0 g 0 0 5.l 0. o 0
f@rg@) = e o7 g = g g (- 2T+t )812(?%)9]

This is the star product that realizes the algebra of the Rindler wedge, written
in terms of the dimensionless variables {z', 2%}

Because the noncommutativity has vanished from the map , we can define
integration in the usual way using the Lorentz covariant measure

d = —gda'da® = ¢* da'da? (18)
This is also natural from the noncommutative point of view as

i &2} * g(a’u :1,2)

fdylciyzf(yl)yz)*é('y‘,'f)=/dwldw ) f(z

Inner derivatives are obvious for the y-algebra, they are

0o, F @)l = 55) (19)

These can be transformed easily to the dimesionless Rindler variables due again
to the commutativity of the transformations (7) (8). The result is

ayl = 8m1 - .’Ezamz
By =™ B (20)

While the direct transformation (8) and (9) are quite simple (and are all
we need to define one simple example of noncommutative field theory on the



Rindler wedge), their inverses will be more complicated. We will calculate them
now. Defining

1
Ty = —=(z +t) A=z,2_ B=z,z"

V2

we see that (8) and (9) become

e* = B 4+ pt
ée%ﬁ — A4 Al (21)
while also
A— At = —if,
B - Bl =ifhA™'B (22)

so that after some trivial algebra we find

Ty =V ABT
z_=VBI1A (23)

where A and B explicitly are

—ify
= ( 2 )Q
B=2(1+ Q‘l)ﬁlu (24)
and
Q:=(1+ ai—go) (25)
v = e2e€ (26)
u = e%" (27)

5 Another representation of the algebra

The map S that maps operators to symbols of operators has many equally valid
definitions differing by ordering perscriptions. Here we explore one based on
normal ordering using the rule “z'” to the left. The motivation for this is to
make clear the consistency of a cutoff prescription that will be introduced later.
First note that all elements of Ap can be written in normal ordered form, as
the right hand side of the commutator is only a function of z'. We define the
symbol map & on an element of Ag a simply by normal ordering it and replacing
the operators in the result by c-number coordinates. Using this prescription a
star product can be calculated as

An * By = 8[S~Y(An)S (BN



The subscript N represents a normal ordered element. We can also introduce
the matrix elements of A: A(z!,2?) =< x!|A(z!,2?)|2? >, noticing that

Aa?,2%) =< 2'|2? > An(z?,2?). (28)

The basic definition of * is given by
(A% B)(z!,z?) = fdildigA(wl,:Eg)B(i:l,asz) (29)

using (28) we find that
(Ax B)(z*,z?) = (30)

de'da? i i i =
[ S empl g € — )@ ) AGFIBE ) (3)

or with an obvious change of variables to

~2

. o . i AGLA v X
(A B)(q) = (8ma*6p) lfddq e~ 2 At PV B(G, 4%) (32)

where A¢t = ¢* — ¢*. The derivatives are then

D1 = (33)

5.1 The near horizon behavior

The Rindler coordinates become ill defined at the horizon and so the deter-
minant of the covariant components of the metric goes to zero. jFrom the
form of the noncommutativity parameter in the Rindler frame we see that this
implies extremely intense noncommutativity near the horizon. The function
0(z') = (4a20p)e®" is exponentially divergent at the horizon 2! — —oc and we
must understand the nature of this pathology and its resolution.

If there were a maximum allowed acceleration in nature we could justify
cutting off the integral at a very large but finite value of z'. In fact, such
a maximal acceleration has been argued to exist for quite some time. The
statement of the mechanism is quite simple in the context of the Unruh effect.
As the acceleration is increased the accelerating object absorbs Unruh radiation
at higher temperature. As seen by the inertial observer this corresponds to the
accelerating object emitting quanta at said temperature and these quanta are
cmitted at a cost of energy to the accelerating mechanisin.

We now adopt this physically motivated acceleration cutoff on the level of
kinematics, i.c. with an ad hoe cutoff. This step is not as trivial as it might
scem since the noncommutative algebra must close within the truncated region.
We now wish to show this. The geometry is (insert diagram)

We call the truncated region R® and the putative algebra Age. The modi-
fication to the star product is clearest in the integral kernel representation, it



amounts to replacing the region of integration R with RE Also, the normal
ordered symbols of operators A are replaced by H(z! + )A Closure is now
obvious.

It is quite a popular procedure to truncate noncommutative algebras algebra

5.2 Bases

There are a variety of bases one might consider picking for R® plane wave,
Gaussian, delta function. In order to gain some intuition for the algebra A¢ we
can explore these bases. When dynamics is introduced later on we will of course
be interested in convenient bases of solutions to the classical field equations.

5.2.1 Plane waves

Something amusing happens when we attempt to multiply two plane waves in
Rindler coordinates. Such waves take the form

ik ik a:t eik2m2

- PR P
e s 1 '.'-hlen.'\.gq

=(q')
and the product is

(€Y xe™*"%)(q",¢*) = (8ma?fy)~ f 4t dg ™0 AT AT (glyih kot (g1 ik gikie®

o2 —i g2 AH! J i 0 .’_\.-
2/ dﬁle”"'z”llq q (q])zkl(gl)ﬁklezkzq f dq 9720_01 'tkz([
8

— 00
—iq'q ; s i —d sl o, [ee

= gda Unf I (ql)?‘kl ezkzq d('jle-luzﬂuq 1 {{Il)"mzj dq2emﬂ_(,q tkz"f
) —00

= Sﬂ-agaﬂ(ql)‘ikl (ql + 40’2901{;2)%’; ei(ka+kz)q2 (34)

5.2.2 Gaussians
5.3 reality conditions

5.4 The integral of a commutator

In the absence of boundaries or in the presence of peculiar restrictions on the
space of operators one can integrate the star commutator to get zero. In oper-
ator language this corresponds to the trace of a commutator being zero (with
appropriate restrictions). In the present context this issue must be addressed
if we wish to calculate equations of motion from an action principle. At what
expense can we commute the order of functions in and integral? The price will
be a boundary term, in analogy with total derivatives, which we now calculate.

We would like to write [(¢*)™, (¢?)V]. as a total derivative. Using the inte-
gral representation we calculate (¢*)V » (¢})M

(8ma?0y) ! / d'dife ™ AT AT (g2)N (g1)M



oo i 2=l o0 —i 2 pa
= (8ﬁa290)—1£ déleduz'goq Ag ((jl)]\ff/ dijge_’_““ 0“0 Ad ((-I-?)N
e —i— 2 AG AGt
— (87426 _,1/ Jit ity CAT 1\ Mo N S(N)
nattn) [ e w T @ panits 0 (AL
2miN

a9 \N41 ra'a? A" [ e
- 5 (40. 90) +1o4aTu, —_{ g1a2oy ((] )
8ma?dy

dqiN
2N o N MG \N (N M ig'q® \*
0 87ra280 (40‘ 90) (Q ) (461.29{)) Z k (ﬂ/[ - ]C}I (40‘,230)

k=0
QRN

N
@M@y

Where we have used the relation ffooo e~ wtn = 27i"§(™(w). The general-

ization to (¢%)N * f(q') is

gl =g

k=0

N

Ny, 9° i
2\N 1 e P52 k (k) (g
(@)Y * £(a") = (@) é(k)(m%) F9") (30)
When g(g2) can be written as a power series in ¢ we have
9(g®) * £(a") = > Cn(d)N = f(a") (37)
N=0
i X £.0 s Bk (k) (1
= el ) g ) (38)
N=0 k=0 kk) 4a*0y

Using the fact that f(¢') *g(¢®) = f(¢")g(¢?) and noticing that this is what
appears as the k = 0 term in the sums we find the following formulas for the
star commutators which are indeed total derivatives

(6, @ = e - @@ S (V) () e () ™} o

k=1

N i
@ @M = e { - @YX (}) o) @) @

2
=1 4da 9()

oo N L
@@ = {35 () onla () 14V}

N=0k=0

Another way to think about this is as follows. We have reviewed that nontrivial
commutation relation can be reduced to the canonical case through a change of
variables. In the Rindler case the canonical algebra is,

[ql’q2] = 4&290

10



and the star product in this casc is of course the Moyal one,
62?:(1260(61 ég —3251 )

Thus the boundary term can be computed easily from this differential form,
yeilding

o0
Tt T8 (42)
n=0

1 ?: T 1
.]f,_‘ = 5(5) g “'gﬂnyn‘ﬁ,;m---un‘ﬁ.ul---un (43)

A boundary term must now be constructed from this expression in order for the
action to satisty a variational principle. This term is

sl = [ swa = [ ra (44)
ORe R

Evaluated on the boundary means ¢! = §.

1, . - v
,]71 = E(Qnﬁgo) el2 ... ghntm Qﬁ,.l.tz‘--,rt.,‘;b,Zuz---vn
co n—1
1 i [0 if = 1 n—i i
= J! =¢IZZT_L!(2EG2HOY (__1) ( i )(’19( ))2(¢( )}2 (45)
n=11i=0

but, at the monomial level,

#(a",4%) = 9(a")0(¢*) = u = 51,099 + 82,90, (46)

6 spacetime uncertainty relations

7 Noncommutative Field Theory on the Rindler
wedge

In this section we define field theory on the noncommutative Rindler wedge.
Before we begin we note that the issue of the unitarity of space-time noncom-
mutative theories is a subject of continued interest in the literature. We will
address in detail the point of view taken toward this issue in the present study
in section ??. For the present we will continue formally. We start with the
action

7 Lo Bfs 1,88, 8 e = -
- dldﬂ(___ S Ypl oty 4
Sl = [ a'a (~5(G0)* (o) +3 (o) * (o) + b+ Va() (a7)
in y-coordinates which we interpret as noncommutative scalar field theory on
the Rindler wedge in a set of variables that make it possible to write the star
product as the Moyal-Weyl one.

11



It is important to realize that the restriction of the usual action on the
noncommutative plane to the Rindler wedge

| dwar(— 192,98 .
S[¢]_jﬂdg,dt( e gt )

is not a well defined object. This is because the Moyal product does not respect
the artificial termination of flows corresponding to the vector fields appearing
in its definition. This is casily seen by noting that the generator of translations
appears in an exponential, and when such an object acts on a function it trans-
lates it along the flow of the associated generator. The function that results
from such an action, say (g o f)(z) will in general have different support than
f(z), i.e. supp(gof) € supp(f). Contrary to the claim in (cite Bal) the solution
to this particular problem is not impossible: one simply uses as coordinates for
the compact region, flows generated by vector fields that have no flux through
any portion of the boundary.

There is also an important physical argument that is much more fundamen-
tal. First lets consider ordinary local field theory. In this framework we know
that local actions must be appended with boundary terms (appropriate to as-
sumed boundary conditions) in order for actions to be additive, in the sense
that given two regions of space €y and 0y with a common boundary the sum of
the actions defined on Oy and Og separately, is equal to the action defined on
1 U Qs That is

Ldp = Ldp + Ldp (48)
U8 1931 22
The same relation can not immediately be assumed to apply to nonlocal (e.g.
noncommutative) theories. As an example of this consider a free noncommu-
tative scalar field theory action defined in a region of the Moyal plane  with
boundary 2. The action

S, ¢,6] = f d:cdt{—%c,{ﬁ*qBJr%gb'*qb’} (49)
Q
varying with respect to ¢ yeilds

548[ = /ﬂ dadt 5¢+ {p— ¢} + /8 . ds ni{n"d¢p* ¢} (50)

where n; is normal to the curve 9Q and s parameterizes the same. We wish to
obtain the equations of motion from the condition that

Sdlag =0

now, since 8¢ is constant on 9 we Recall that ¢(y) = ¢(z(y)) and that the
y coordinates are good on the whole Rindler wedge except on the horizons.
The reader can check this by computing the determinant of the Jacobian of the
transformations (7) (8). The integral then extends over all real values of the
variables {y'} and we do not encounter the above problem. If we impose the

12



usual boundary conditions at the Rindler horizon, the integral of the quadratic
Moyal products can be replaced by the integral of ordinary pointwise products
yielding

o 02 1,04 & 3
sl = [t at(-5(55) + 5 (G0 + T +V@) 6D

The noncommutativity enters into the free theory via the metric and derivatives,

and of course into the interacting theory via V. (¢).

7.1 A simpler way?

Slg] = /R c d#(q)%n””a,,.cb*c’iucb (52)
" € (§,00) ¢*€R (53)

After the variation we get

5(6] = | dula){~) =89+ d}la) + 65314 (54)

where the last two terms are variations of boundary terms, i.e. are total deriva-
tives. Explicitly,

330 = 5 [ du(a)on {0016+ 9459} (55)

55301 = 3 | dula)le,50. (56)

8 Relation to 'tHooft’s S-matrix approach
9 The maximum tension principle

10 Relation to the matrix model

11 Relation to Liouville theory

12 problems with the approach

e Transverse coordinates must be added, or we are just describing a degen-
erate case.

e Include a section on noncommutative half space.
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13 Coordinate transformations of symbols

In noncommutative geometry, convenient procedure is to replace operators sat-
isfying a certain algebra A, by their symbols, and implement algebraic relation
by introducing a suitable deformed product. These symbols are then often ma-
nipulated as if they represent a geometrical continuum. A common situation
arises: one attempts to ‘change coordinates’ on this ‘geometrical continuum’
without worrying too much about mathematical niceties. To what extent is this
justified?

First lets consider the simple example of the noncommutative plane Rg, with
generators {2'}. First we will consider the case of a change of coordinates that
covers the entire plane and respects the symmetries of Rg. The first con-
dition refers to the effect of the coordinate transformation (CT) on the indices
labeling the symbols of the operators generating 3, while the second condition
refers to the effect of the CT on the symmetries of the noncommutative alge-
bra R%. One of the apparent features of noncommutative spaces as geometric
objects is that they preserve the symmetries of their commutative limits. As in-
gredients for field theories, the situation regarding symmetries is more involved,
as there can be a mixture of internal and spacetime symmetries in the presence
of noncommutativity.

14



